PHYSICAL REVIEW E VOLUME 57, NUMBER 5 MAY 1998

Structure and instability of high-density equations for traffic flow

Dirk Helbing
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Similar to the treatment of dense gases, fluid-dynamic equations for the dynamics of congested vehicular
traffic are derived from Enskog-like kinetic equations. These contain additional terms due to the anisotropic
vehicle interactions. The calculations are carried out up to Navier-Stokes order. A linear instability analysis
indicates an additional kind of instability compared to previous macroscopic traffic models. The relevance for
describing granular flows is outlinep51063-651X98)06104-2

PACS numbds): 51.10+y, 47.50+d, 47.55-t, 89.40+k

An efficient infrastructure is an essential precondition forthe situation is more involved since the interaction term does
every industrialized country. Therefore, the considerable denot vanish in equilibrium situations. Now this problem has
terioration of the traffic situation on “freeways” during the been solved. In the following, we will show how to derive
past decade is a serious problem. Not only does impedel’@a"StiC traffic equations that include corrections due to ve-
traffic cause economic losses of many billions of dollars eachicular space requiremengnd Navier-Stokes terms. Since
year, it also produces serious ecological damages. Thus greese nontrivial corrections change steuctureof the equa-
efforts have been made to develop methods for traffic optitions, they cause an additional instability. For the same rea-
mization and forecasts, for which reliable traffic simulationsson, the low-density regime does not allow an extrapolation
are necessary. Consequently, research on traffic dynamié@ situations at high densities. The method presented is also
recently has become a very important topic. In recent yeargelevant for understanding instabilities in granular flows
numerous results have been published on microscopic mo@ince granular collisions are also not energy conserving. Re-
els [1-4], including cellular automata modelf2] and  cently, many publications tried to tackle these interesting
molecular-dynamics-like modelg3,4], kinetic models[4—  problems with fluid-dynamic equations derived from the as-
10], and macroscopidfluid-dynamic-like models[11,4— sociated kinetic equatiofil5—-17. However, most of them
10], aiming at an understanding of stop and go traffic. Theare restricted to Euler order or the low-density regime
topic is related to the fields of nonlinear dynamicsl],  [16,17], thereby neglecting relevant sources of stability and
phase transitiongl—4,11], and stochastic processis?]. instability. Probably for this reason, these approaches have

Macroscopictraffic models are suitable not only for on- Nnot been fully successful in describing the formation of den-
line simulations of traffic networks, but also for analytical Sity waves in sand that is falling through a vertical pipe
investigations. Some very recent publications proposed thel7,18.
derivation of realistic traffic equations from the “micro- Now we discuss the model. Since the number of vehicles
scopic” dynamics of driver-vehicle units via a kinetic ap- on a(for simplicity, circulay freeway is conserved, the ki-
proach[4—10. However, for the following reasons, these netic traffic equation for the phase space dengity,v,t) of
attempts have been only partly successful. Either the modelgehicles with velocityyv =d,r at placer and timet has the
treat the vehicles like pointlike object§—7], in which case form of a continuity equation with a sink or source term
the resulting macroscopic models are only valid for free traf-
fic flow, or the models take into account the finite-space dp+d,(pv)+d,(p dw)=(dp)ss. (1)
requirements of vehicld€,8—10. However, the calculations
were carried out up t&uler order only, based on thgeroth- ~ As usual, we will assume the acceleration law =(V,
orden approximation of local equilibrium. This assumes that —v)/7, where 7 denotes a density-dependent acceleration
the form of the equilibrium velocity distribution remains un- time andV, the desired velocity, which is assumed to be the
changed in dynamic situations, but it is given by tbeal ~ same for all vehicles heréhe case of a speed limitThe
values of the density(r,t), average velocityw/(r,t), etc. It  sink or source term dp)ss originates from suddetinon-
will be demonstrated that corresponding traffic models aralifferentiablg velocity changes. It splits up into a velocity-
not even valid in linear approximation since their linear sta-diffusion term due to fluctuations of the acceleration behav-
bility analysis gives totally misleading results. To solve thisior (“imperfect driving”) and an interaction term
problem, we must calculate thdrst-ordey Navier-Stokes

corrections of the macroscopic traffic equations, which take (9{p)ss=2(PD)+ (4P )int - (2)
into account the structural change of the velocity distribution
in inhomogeneous traffic situations. The interaction term reflects sudden deceleration processes.

For ordinary gases, the Navier-Stokes terftransport In analogy to the Enskog theory of dense gdd&%20 and
termg are calculated from the kinetic equation by means ofgranular medig15], but with an interaction law typical for
the Chapman-Enskog methdd2]. An approximate but vehicles[8,4], it is of the form
more intuitive method is based on the relaxation time ap- _
proximation[13,14] (see below. For kinetictraffic models (0:P)ine=(1—p)x(r+1,t)B(v), 3
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with the Boltzmann-like interaction function

B(v):J dwiw—v)p(r,w,t)p(r+s,v,t) (49 i
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FIG. 1. The instability diagram of the Navier-Stokes-like traffic
model for pointlike vehicles =1=1,=0) indicates that traffic
flow would be unstable above a certain critical density, surprisingly
even at large wave numbeks

According to this, the phase-space densjiyr,v,t) in-
creases due to deceleration of vehicles with velocities
>v, which cannot overtake vehicles with velocity The
density-dependent probability of immediate overtaking is
represented byp. A decrease of the phase-space density o i ]

F(r,v,t) is caused by interactions of vehicles with velocity It ce_m be shpwn that th_e’lfmenc traffic eq_ul;atlon has the
v with slower vehicles driving with velocitiesv<v. 9 Gau;ssmn equilibrium solutiopo(v) = p(27O) " _ZeXF[_.(.U
The corresponding interaction rates are proportionaF_V) /2®]{ which additionally fulfills the implicit equilib-

to the relative velocityv —w| and to the phase-space densi- lum refationsV=Vy—7(1-p)px® and®=Dr. If the lo-
ties of both interacting vehicles. Bys(V)=l,+I(v) calvaluesp(r,t), V(r.t), and®(r,t) are inserted instead,
X[~ (vehicle length)- (safe distancd) it is taken into ac- We obtain the Euler approximation. This leads’e pI'~0
count that the distance of interacting vehicles is given by 421 However, ininhomogeneoudraffic situations the
their velocity-dependent space requirements. These cause #im of the velocity distributiorP(v;r,t)=p(r,v,t)/p(r,t)
increase of the interaction rate, which is described by th€hanges due to the finite adaptation timethat is needed to
pair-correlation functiony(r)=[1—p(r,t)s] ! at the “in-  reach local equilibrium. In the relaxation-time approximation
teraction point” r+1. A more detailed discussion of the [5,13,14 we find the Navier-Stokes correction

above kinetic traffic model is presented elsewHdr€]. De- =-3y7mO/[(1-p)pld,®. The corresponding instability
scribing the individual acceleration behavior \digw =(V,  diagram is depicted in Fig. 1 for the following model func-
—v)/7 and introducing a velocity-diffusion term as the tions approximating empirical results [4,8]:

source of velocity variations improves the original approachr(p) = (8s)/{0.97exg—p/(16 km 1)]+0.03},p(p) = exp

by Prigogine and Hermaf#,5], which assumes a relaxation [—p/(16 km™1)], and D =0.03v?/(p).

of the actual phase-space density to a desired 6he The instability diagram is obtained b§) assuming a
Now we will focus on the macroscopic equations for thesmall periodic perturbationsg(r,t) =ggexgikr+(\+iw)t]

spatial densityp(r,t)=/dvp(r,v,t), the average velocity ©f the macroscopic traffic quantities={p,V,0} relative to

V(rt)=[dovp(r,u,t)/p(r,t), and the velocity variance t_he stationary a_nd spatlally_homogeneous equilibrium solu-

O(r.1) = [do[v—V(r.0)1%p(rv.0)/p(r.t). These are ob- tion ge(p) (9o being the amplitudek the wave number the

tained by multiplying the kinetic equation by, integrating growth rate, ando the frequency of the perturbatipn(ii)

) . inserting g(r,t)=ge+ 8g(r,t) into the macroscopic traffic
with respect tov, and a number of straightforward calula- . . - .

) ’ ) ) ~_equationsyiii) neglecting quadratic terms in the small per-
tions [4,8]. In order to underline the crucial results of this 9 (iil) neg 99 P

et . - turbationség(r,t)<g., and(iv) determining the three com-
paper, we will first discuss the case égligible space re- ) ~ _ . . .
quirements[s,|,1o<1/p(r,t)], in which the macroscopic PIEX €igenvalues.=A+iw of the linearized equations de-
traffic equations read pgndenF onp and k. Equilibrium traffic flow is unstable,
giving rise to the well-known phenomenon sfop and go
ap+Va,p=—pd,V, (5)  traffic [4,11], if at least one of the growth rates is positive,
i.e., max A\>0. Therefore, the instability diagram shows

IN+Vo,V=—1pd, P+(Vo—V)I7—(1—-p)P, (6) mMaxr(k,p) if this is greater than zero and 0 otherwise.
It is interesting to compare Fig. 1 with the instability dia-

3O +V3,0=—2Plpa,N—1pd,J+2(D—0/7) gram in Fig. 2, which corresponds to the Euler approxima-
' ' ' tion with I'=0. This shows that the curious maxima in the
—-(1-p)J. (7) middle of Fig. 1 are an effect of the deformation of the

Gaussian velocity distribution in inhomogeneous situations.
Here P=p® denotes the ‘“pressure” andJ(r,t)  Since they originate from the terms containifig they are
=p(r,)T(r,t)=fdv[v—V(r,t)1%p(r,v,t) the flow of ve- directly connected with the dynamic variance equations.
locity variance. Equatioib) is the expected continuity equa- Therefore, they could not be discovered in previous traffic
tion for the density. In comparison to the conventional Eulermodels that eliminate® (r,t) by means of approximations
equations for ordinary gases, the velocity equatienand  of the kind® (r,t)~0%(p(r,t),V(r.t)) [4.8].
the variance equatiof¥) contain two additional terms, each ~ Apparently, the Navier-Stokes corrections do not cause a
of which breaks momentum and energy conservation. Thetability of equilibrium traffic flow with respect to perturba-
respective last terms result from the anisotropic vehicle intions of large wave numberk (i.e., small wavelengths
teractions, while the previous terms reflect acceleration be2#/k). This surprising result is a serious problem for a nu-
havior and velocity fluctuations. merical solution of the above equations. It comes from the
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FIG. 2. Same as Fig. 1, but for macroscopic traffic equations FIG. 3. Same as Fig. 2, but with consideration of vehicular
calculated up to Euler order only, thereby neglecting the deformaspace requirementdo= lpmay, 1=0.8 /). In agreement with
tion of the velocity distribution in inhomogeneous traffic situations. empirical findings[21], the results predict that equilibrium traffic

flow is stable up to 12 vehicles per kilometer and lane, at extreme
fact that(sheay viscosity terms are missing due to the spatialdensities, and at high wave numbessall wave lengths
one-dimensionality of traffic flow. This problem vanishes
}’;EZ?] fnotgeacéfg'jnﬁzei ;?p‘;j:'cu:iros_gag\e/) .reg‘;gevryﬂf *ocal equilibrium distributiorPo(v;r 1) is caused by the in-
not expect this since, for ordinary gases, $teictureof the teraction term('u) thfa nonequmbn'um corrections of the lat-
fluid-dynamic equations does not change at high densitiede" can be adiabatically approximated bysp(r,v,t)/ 7o,
The only changes are the constitutive relationsfoand 7 ~ Where —1/7q denotes the slowest eigenvalue of the linear-
[19,4]. However, in the case of traffic dynamics the situationized interaction operator, ar(di) 1/7, is of the order of the
is completely different. Since the anisotropic vehicle interac-vehicular interaction rate
tions do not fulfill momentum and energy conservation, they
lead to contributions that cannot be absorbed by modified
functionsP and J. Whereas the vehicle density still obeys o(r,t)
the continuity equatiorn5), the structure of the velocity and
variance equations changes considerably: (1—p) x]: xf dw|v—w|}§(r,v,t)'§(r +5s,W,t).

w<v

'Iéon [5,13,14, which assumes thék) the deformation of the

=<1—p>x<r+|,t>/p<r,t>j do

IN+VIV=—[1lp+ys(1+px)]®d,p (10

_ 2
+yp(2sVO/m—pOXITIV)oV The finally resulting relation is, witfv =v—V,

—[1+ ypsl2]3,0 — ys(s/2+ px12/2)© 57 ~ -
[1+7ps/210,0 = ys(s/2+ pxI*12) O 97p SP(F0,0)=Po(F0,t) 7o(360/0 — 503 ©2)/25,0

+ 2\/__ 2 2 + _ — O
7 pIN = ypsTladr O+ (Vo= V)= 7p0, +7o(1—p)x(r +1,0)B(0) = Po(r,v,t) 050/ ©

(8
9O +V3,0=—[2+ yps]Od,V +2yps\@I 74,0 *(=px(r+l ’t)J dv v B(v)
_ 2 2 2 @ 2 Po(r,v,t
vpS @20V + yps O/ wr O B 0(2(;2)7'0(502_®)
+2(D—0/7). 9
This result is valid up to Euler order. It has been obtained by X(1—-p)x(r +|,t)f dv Sv*B(v). (1)

evaluating the kinetic equation on the assumption of a

Gaussian velocity distributiorPOg;;r,t) and second-order \yith F(r,v,t)~po(r,v,t)+5B(r,v,t), it follows that the
Taylor expansion of the functions and x with respect tas  quantitiesp(r,t), V(r,t), and®(r,t), which are taken into
andl aroundr, thereby neglecting products of partial deriva- account by the Gaussian approximatiBg(v;r,t), are not

tives. Figure 3 shows that the finite-space requirements fgrected bysp(r,v,t). However, for the third central ve-
vehicles cause the desired stability of equilibrium traffic ﬂOWIocity momentl” we obtain. instead of ~0

with respect to perturbations of small wavelengths. This

comes from the finite Vviscosity coefficient 7 F=-3Jm0/[(1-p)px]d,®+sO 9 V+ s2®/2afv
_ 2r o2 _ 3
= yp[sVOI7—pO xI°/2V]. )
Nevertheless, the result is not even correct in the linear —3sy70/29,0 —3s*\w0/4570, (12

approximation since inhomogeneous traffic again changes . , o ,
the form of the velocity distribution. To calculate the Navier- Which becomes different from zero in inhomogeneous traffic

Stokes corrections, we must derive an equation for the smafiituations. This causes the additional contribution
deviation &p(r,v,t) from po(r,v,t)=p(r,t)Po(v;r,1), +psl(6\70)a,T + ps?/ (12{70) 52T (13)
which is caused by inhomogeneitieg, J,V, andd, ®. This

has been done by means of the relaxation time approximae the velocity equatiori8) and the extra term
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In summary, we have found several significant results,

max 2 (1/h) which are not sensitive to the particular choice of the param-

igg eters or to different variations of the modél) A conistent
300 160 traffic model needs to take into account vehicular space re-
200 _, 12130 quirements as well as Navier-Stokes terms in order to allow

100 i a realistic description of traffic instabilitie§i) Treating ve-

l‘"l.
—15(?

f@?ﬁ?;m,',',"i ',,' ) 600p (vehicles/km) hicles in a pointlike manner, the stability of equilibrium traf-
» fic flow with respect to perturbations of small wavelengths is
not correctly described, even if Navier-Stokes terms are in-
cluded.(iii) This problem vanishes when corrections due to
FIG. 4. Same as Fig. 3, but for macroscopic traffic equationghe finite-space requirements of vehicles are considered. That
including vehicular space requiremeand Navier-Stokes correc- is, the macroscopic traffic equations for low densities do not
tions in order to obtain valid results. The instability diagram is nowallow an extrapolation to the traffic dynamics at high densi-
divided into two separate humps in each half plane, indicating twgjes. (iv) The Navier-Stokes terms are responsible for a sub-
different kinds of instability. division of the instability region into separate areas. These
belong to different eigenvalue$v) Whereas the instability
—T[p+sd,p+5229%p—psINw@® I,V —ps?(2\m0)d>v]  diagrams of traffic models, which consist of a density and a
velocity equation only, typically show two relevant humps
—psl20,I — ps?l447T (14 [4,8], the two additionalnarrow) humps of the above model
are related to the dynamic variance equation. Therefore, the
to the variance equatiofB). Together with the continuity dynamic variance equation gives rise to a different kind of
equation(5), the resulting equations are the desired macrofraffic instability. A more detailed discussion of the applied
scopic traffic equations for high densities. The related instarelaxation time approximation as well as of equations, simu-
bility diagram is depicted in Fig. 4 and indicates two differ- lations, and results for the nonlinear regime of traffic dynam-

ent kinds of instabilities. ics will be given in a forthcoming papéf.4].
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