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Structure and instability of high-density equations for traffic flow

Dirk Helbing
II. Institute for Theoretical Physics, University of Stuttgart, 70550 Stuttgart, Germany

~Received 31 October 1997!

Similar to the treatment of dense gases, fluid-dynamic equations for the dynamics of congested vehicular
traffic are derived from Enskog-like kinetic equations. These contain additional terms due to the anisotropic
vehicle interactions. The calculations are carried out up to Navier-Stokes order. A linear instability analysis
indicates an additional kind of instability compared to previous macroscopic traffic models. The relevance for
describing granular flows is outlined.@S1063-651X~98!06104-2#

PACS number~s!: 51.10.1y, 47.50.1d, 47.55.2t, 89.40.1k
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An efficient infrastructure is an essential precondition
every industrialized country. Therefore, the considerable
terioration of the traffic situation on ‘‘freeways’’ during th
past decade is a serious problem. Not only does impe
traffic cause economic losses of many billions of dollars e
year, it also produces serious ecological damages. Thus
efforts have been made to develop methods for traffic o
mization and forecasts, for which reliable traffic simulatio
are necessary. Consequently, research on traffic dyna
recently has become a very important topic. In recent ye
numerous results have been published on microscopic m
els @1–4#, including cellular automata models@2# and
molecular-dynamics-like models@3,4#, kinetic models@4–
10#, and macroscopic~fluid-dynamic-like! models @11,4–
10#, aiming at an understanding of stop and go traffic. T
topic is related to the fields of nonlinear dynamics@11#,
phase transitions@1–4,11#, and stochastic processes@1,2#.

Macroscopictraffic models are suitable not only for on
line simulations of traffic networks, but also for analytic
investigations. Some very recent publications proposed
derivation of realistic traffic equations from the ‘‘micro-
scopic’’ dynamics of driver-vehicle units via a kinetic a
proach @4–10#. However, for the following reasons, thes
attempts have been only partly successful. Either the mo
treat the vehicles like pointlike objects@5–7#, in which case
the resulting macroscopic models are only valid for free tr
fic flow, or the models take into account the finite-spa
requirements of vehicles@4,8–10#. However, the calculations
were carried out up toEuler order only, based on the~zeroth-
order! approximation of local equilibrium. This assumes th
the form of the equilibrium velocity distribution remains un
changed in dynamic situations, but it is given by thelocal
values of the densityr(r ,t), average velocityV(r ,t), etc. It
will be demonstrated that corresponding traffic models
not even valid in linear approximation since their linear s
bility analysis gives totally misleading results. To solve th
problem, we must calculate the~first-order! Navier-Stokes
corrections of the macroscopic traffic equations, which ta
into account the structural change of the velocity distribut
in inhomogeneous traffic situations.

For ordinary gases, the Navier-Stokes terms~transport
terms! are calculated from the kinetic equation by means
the Chapman-Enskog method@12#. An approximate but
more intuitive method is based on the relaxation time
proximation @13,14# ~see below!. For kinetic traffic models
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the situation is more involved since the interaction term d
not vanish in equilibrium situations. Now this problem h
been solved. In the following, we will show how to deriv
realistic traffic equations that include corrections due to
hicular space requirementsand Navier-Stokes terms. Sinc
these nontrivial corrections change thestructureof the equa-
tions, they cause an additional instability. For the same r
son, the low-density regime does not allow an extrapolat
to situations at high densities. The method presented is
relevant for understanding instabilities in granular flow
since granular collisions are also not energy conserving.
cently, many publications tried to tackle these interest
problems with fluid-dynamic equations derived from the a
sociated kinetic equation@15–17#. However, most of them
are restricted to Euler order or the low-density regim
@16,17#, thereby neglecting relevant sources of stability a
instability. Probably for this reason, these approaches h
not been fully successful in describing the formation of de
sity waves in sand that is falling through a vertical pi
@17,18#.

Now we discuss the model. Since the number of vehic
on a ~for simplicity, circular! freeway is conserved, the ki
netic traffic equation for the phase space densityr̃ (r ,v,t) of
vehicles with velocityv5dtr at placer and timet has the
form of a continuity equation with a sink or source term

] t r̃ 1] r~ r̃ v !1]v~ r̃ dtv !5~] t r̃ !SS. ~1!

As usual, we will assume the acceleration lawdtv5(V0
2v)/t, where t denotes a density-dependent accelerat
time andV0 the desired velocity, which is assumed to be t
same for all vehicles here~the case of a speed limit!. The
sink or source term (] t r̃ )SS originates from sudden~non-
differentiable! velocity changes. It splits up into a velocity
diffusion term due to fluctuations of the acceleration beh
ior ~‘‘imperfect driving’’ ! and an interaction term

~] t r̃ !SS5]v
2~ r̃ D !1~] t r̃ ! int . ~2!

The interaction term reflects sudden deceleration proces
In analogy to the Enskog theory of dense gases@19,20# and
granular media@15#, but with an interaction law typical for
vehicles@8,4#, it is of the form

~] t r̃ ! int5~12p!x~r 1 l ,t !B~v !, ~3!
6176 © 1998 The American Physical Society
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with the Boltzmann-like interaction function

B~v !5E
w.v

dw~w2v ! r̃ ~r ,w,t ! r̃ ~r 1s,v,t ! ~4a!

2E
v.w

dw~v2w! r̃ ~r ,v,t ! r̃ ~r 1s,w,t !.

~4b!

According to this, the phase-space densityr̃ (r ,v,t) in-
creases due to deceleration of vehicles with velocitiesw
.v, which cannot overtake vehicles with velocityv. The
density-dependent probability of immediate overtaking
represented byp. A decrease of the phase-space dens
r̃ (r ,v,t) is caused by interactions of vehicles with veloc
v with slower vehicles driving with velocitiesw,v. 9
The corresponding interaction rates are proportio
to the relative velocityuv2wu and to the phase-space den
ties of both interacting vehicles. Bys(V)5 l 01 l (V)
3@'(vehicle length)1(safe distance)# it is taken into ac-
count that the distance of interacting vehicles is given
their velocity-dependent space requirements. These caus
increase of the interaction rate, which is described by
pair-correlation functionx(r )5@12r(r ,t)s#21 at the ‘‘in-
teraction point’’ r 1 l . A more detailed discussion of th
above kinetic traffic model is presented elsewhere@4,8#. De-
scribing the individual acceleration behavior viadtv5(V0
2v)/t and introducing a velocity-diffusion term as th
source of velocity variations improves the original approa
by Prigogine and Herman@4,5#, which assumes a relaxatio
of the actual phase-space density to a desired one@6#.

Now we will focus on the macroscopic equations for t
spatial densityr(r ,t)5*dv r̃ (r ,v,t), the average velocity
V(r ,t)5*dvv r̃ (r ,v,t)/r(r ,t), and the velocity variance
Q(r ,t)5*dv@v2V(r ,t)#2 r̃ (r ,v,t)/r(r ,t). These are ob-
tained by multiplying the kinetic equation byvk, integrating
with respect tov, and a number of straightforward calula
tions @4,8#. In order to underline the crucial results of th
paper, we will first discuss the case ofnegligible space re-
quirements @s,l ,l 0!1/r(r ,t)#, in which the macroscopic
traffic equations read

] tr1V] rr52r] rV, ~5!

] tV1V] rV521/r] rP1~V02V!/t2~12p!P, ~6!

] tQ1V] rQ522P/r] rV21/r] rJ12~D2Q/t!

2~12p!J. ~7!

Here P5rQ denotes the ‘‘pressure’’ andJ(r ,t)
5r(r ,t)G(r ,t)5*dv@v2V(r ,t)#3 r̃ (r ,v,t) the flow of ve-
locity variance. Equation~5! is the expected continuity equa
tion for the density. In comparison to the conventional Eu
equations for ordinary gases, the velocity equation~6! and
the variance equation~7! contain two additional terms, eac
of which breaks momentum and energy conservation.
respective last terms result from the anisotropic vehicle
teractions, while the previous terms reflect acceleration
havior and velocity fluctuations.
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It can be shown that the kinetic traffic equation has
Gaussian equilibrium solutionr̃ 0(v)5r(2pQ)21/2exp@2(v
2V)2/2Q#, which additionally fulfills the implicit equilib-
rium relationsV5V02t(12p)rxQ andQ5Dt. If the lo-
cal valuesr(r ,t), V(r ,t), andQ(r ,t) are inserted instead
we obtain the Euler approximation. This leads toJ5rG'0
@4,21#. However, in inhomogeneoustraffic situations the
form of the velocity distributionP(v;r ,t)5 r̃ (r ,v,t)/r(r ,t)
changes due to the finite adaptation timet0 that is needed to
reach local equilibrium. In the relaxation-time approximati
@5,13,14# we find the Navier-Stokes correctionG
523ApQ/@(12p)r#] rQ. The corresponding instability
diagram is depicted in Fig. 1 for the following model fun
tions approximating empirical results @4,8#:
t(r) 5 (8s)/$0.97exp@2r /(16 km21)# 10.03%,p(r) 5 exp
@2r/(16 km21)], andD50.03V2/t(r).

The instability diagram is obtained by~i! assuming a
small periodic perturbationdg(r ,t)5g0exp@ikr1(l1iv)t#
of the macroscopic traffic quantitiesgP$r,V,Q% relative to
the stationary and spatially homogeneous equilibrium so
tion ge(r)(g0 being the amplitude,k the wave number,l the
growth rate, andv the frequency of the perturbation!, ~ii !
inserting g(r ,t)5ge1dg(r ,t) into the macroscopic traffic
equations,~iii ! neglecting quadratic terms in the small pe
turbationsdg(r ,t)!ge , and~iv! determining the three com
plex eigenvaluesl̃5l1 iv of the linearized equations de
pendent onr and k. Equilibrium traffic flow is unstable,
giving rise to the well-known phenomenon ofstop and go
traffic @4,11#, if at least one of the growth rates is positiv
i.e., max l.0. Therefore, the instability diagram show
maxl(k,r) if this is greater than zero and 0 otherwise.

It is interesting to compare Fig. 1 with the instability dia
gram in Fig. 2, which corresponds to the Euler approxim
tion with G50. This shows that the curious maxima in th
middle of Fig. 1 are an effect of the deformation of th
Gaussian velocity distribution in inhomogeneous situatio
Since they originate from the terms containingG, they are
directly connected with the dynamic variance equatio
Therefore, they could not be discovered in previous tra
models that eliminatedQ(r ,t) by means of approximation
of the kindQ(r ,t)'Qe

„r(r ,t),V(r ,t)… @4,8#.
Apparently, the Navier-Stokes corrections do not caus

stability of equilibrium traffic flow with respect to perturba
tions of large wave numbersk ~i.e., small wavelengths
2p/k). This surprising result is a serious problem for a n
merical solution of the above equations. It comes from

FIG. 1. The instability diagram of the Navier-Stokes-like traffi
model for pointlike vehicles (s5 l 5 l 050) indicates that traffic
flow would be unstable above a certain critical density, surprisin
even at large wave numbersk.



ia
es
a

tie

on
ac
e

fie
s

d

b
f
r

a-
s
w

hi

ea
g
r-

m

t-

ar-

-

ffic

on
ma
s

lar

c
me

6178 57BRIEF REPORTS
fact that~shear! viscosity terms are missing due to the spat
one-dimensionality of traffic flow. This problem vanish
when corrections due to vehicular space requirements
taken into account (l 051/rmax, l 50.8 sV). One would
not expect this since, for ordinary gases, thestructureof the
fluid-dynamic equations does not change at high densi
The only changes are the constitutive relations forP andJ
@19,4#. However, in the case of traffic dynamics the situati
is completely different. Since the anisotropic vehicle inter
tions do not fulfill momentum and energy conservation, th
lead to contributions that cannot be absorbed by modi
functionsP andJ. Whereas the vehicle density still obey
the continuity equation~5!, the structure of the velocity an
variance equations changes considerably@g5(12p)x#:

] tV1V] rV52@1/r1gs~11rx l !#Q] rr

1gr~2sAQ/p2rQx l 2/V!] rV

2@11grs/2#] rQ2gs~s/21rx l 2/2!Q] r
2r

1h/r] r
2V2grs2/4] r

2Q1~V02V!/t2grQ,

~8!

] tQ1V] rQ52@21grs#Q] rV12grsAQ/p] rQ

2grs2Q/2] r
2V1grs2AQ/p] r

2Q

12~D2Q/t!. ~9!

This result is valid up to Euler order. It has been obtained
evaluating the kinetic equation on the assumption o
Gaussian velocity distributionP0(v;r ,t) and second-orde
Taylor expansion of the functionsr̃ andx with respect tos
andl aroundr , thereby neglecting products of partial deriv
tives. Figure 3 shows that the finite-space requirement
vehicles cause the desired stability of equilibrium traffic flo
with respect to perturbations of small wavelengths. T
comes from the finite viscosity coefficient h
5gr2@s2AQ/p2rQx l 3/2V#.

Nevertheless, the result is not even correct in the lin
approximation since inhomogeneous traffic again chan
the form of the velocity distribution. To calculate the Navie
Stokes corrections, we must derive an equation for the sm
deviation d r̃ (r ,v,t) from r̃ 0(r ,v,t)5r(r ,t)P0(v;r ,t),
which is caused by inhomogeneities] rr, ] rV, and] rQ. This
has been done by means of the relaxation time approxi

FIG. 2. Same as Fig. 1, but for macroscopic traffic equati
calculated up to Euler order only, thereby neglecting the defor
tion of the velocity distribution in inhomogeneous traffic situation
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tion @5,13,14#, which assumes that~i! the deformation of the
local equilibrium distributionP0(v;r ,t) is caused by the in-
teraction term,~ii ! the nonequilibrium corrections of the la
ter can be adiabatically approximated by2d r̃ (r ,v,t)/t0,
where21/t0 denotes the slowest eigenvalue of the line
ized interaction operator, and~iii ! 1/t0 is of the order of the
vehicular interaction rate

1

t0~r ,t !
5~12p!x~r 1 l ,t !/r~r ,t !E dv

3E
w,v

dwuv2wu r̃ ~r ,v,t ! r̃ ~r 1s,w,t !.

~10!

The finally resulting relation is, withdv5v2V,

d r̃ ~r ,v,t !' r̃ 0~r ,v,t !t0~3dv/Q2dv3/Q2!/2] rQ

1t0~12p!x~r 1 l ,t !B~v !2P0~r ,v,t !t0dv/Q

3~12p!x~r 1 l ,t !E dvdvB~v !

2
P0~r ,v,t !t0

2Q2 ~dv22Q!

3~12p!x~r 1 l ,t !E dvdv2B~v !. ~11!

With r̃ (r ,v,t)'r0(r ,v,t)1d r̃ (r ,v,t), it follows that the
quantitiesr(r ,t), V(r ,t), andQ(r ,t), which are taken into
account by the Gaussian approximationP0(v;r ,t), are not
corrected byd r̃ (r ,v,t). However, for the third central ve
locity momentG we obtain, instead ofG'0,

G523ApQ/@~12p!rx#] rQ1sQ] rV1s2Q/2] r
2V

23sApQ/2] rQ23s2ApQ/4] r
2Q, ~12!

which becomes different from zero in inhomogeneous tra
situations. This causes the additional contribution

1rs/~6ApQ!] rG1rs2/~12ApQ!] r
2G ~13!

to the velocity equation~8! and the extra term

s
-

.

FIG. 3. Same as Fig. 2, but with consideration of vehicu
space requirements (l 051/rmax, l 50.8 sV). In agreement with
empirical findings@21#, the results predict that equilibrium traffi
flow is stable up to 12 vehicles per kilometer and lane, at extre
densities, and at high wave numbers~small wave lengths!.
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2G@r1s] rr1s2/2] r
2r2rs/ApQ] rV2rs2/~2ApQ!] r

2V#

2rs/2] rG2rs2/4] r
2G ~14!

to the variance equation~9!. Together with the continuity
equation~5!, the resulting equations are the desired mac
scopic traffic equations for high densities. The related ins
bility diagram is depicted in Fig. 4 and indicates two diffe
ent kinds of instabilities.

FIG. 4. Same as Fig. 3, but for macroscopic traffic equati
including vehicular space requirementand Navier-Stokes correc-
tions in order to obtain valid results. The instability diagram is n
divided into two separate humps in each half plane, indicating
different kinds of instability.
el-
-
-

In summary, we have found several significant resu
which are not sensitive to the particular choice of the para
eters or to different variations of the model.~i! A conistent
traffic model needs to take into account vehicular space
quirements as well as Navier-Stokes terms in order to al
a realistic description of traffic instabilities.~ii ! Treating ve-
hicles in a pointlike manner, the stability of equilibrium tra
fic flow with respect to perturbations of small wavelengths
not correctly described, even if Navier-Stokes terms are
cluded.~iii ! This problem vanishes when corrections due
the finite-space requirements of vehicles are considered.
is, the macroscopic traffic equations for low densities do
allow an extrapolation to the traffic dynamics at high den
ties. ~iv! The Navier-Stokes terms are responsible for a s
division of the instability region into separate areas. The
belong to different eigenvalues.~v! Whereas the instability
diagrams of traffic models, which consist of a density an
velocity equation only, typically show two relevant hump
@4,8#, the two additional~narrow! humps of the above mode
are related to the dynamic variance equation. Therefore,
dynamic variance equation gives rise to a different kind
traffic instability. A more detailed discussion of the applie
relaxation time approximation as well as of equations, sim
lations, and results for the nonlinear regime of traffic dyna
ics will be given in a forthcoming paper@14#.
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